
201011351 So Yeon LEE, 201011374 Seo Hui HA,

201160417 Bjarke LARSEN, 201160526 Jesse ONG PHO

FINAL PRESENTATION:

INTRODUCTION TO SOFTWARE

ENGINEERING

Group 5 & 6

Agenda

 The Review Process

 Statement of purpose

 DFD Modifications
 Modified DFD Level 1

 Modified DFD Level 2

 Modified DFD Level 2 (Cont.)

 Modified DFD Level 3

 Original DFD Level 4

 Modified DFD Level 4 (FSM)

 Total DFD

 Data Dictionary

 Explanation of source code

 Process Specification

 Demonstration

2

3

4

Statement of purpose
Draw a Control Flow Graph (CFG):

 1. convert C source code to the CFG in text format to the console

 2. Read in command line from user

 format: ./CG (example.c) (report.txt)

 3.if user gave wrong format of command line,

 show help message and just end the program

 4. show user the generating process of CFGs

 5.notice user the start of converting

 6. show whether the source reading was successful or not.

 if the codes were successfully read , show success message.

 if not, show error message and exit the program

 7. Create a report file by listing all of the edges and blocks that were generated by this program
according to the C source code

 8. show report file name at last.

 9.convert c source that contains a main function

 10. Any user-libraries are not to be included.

 11. Only applied to one source code file at a time that does not include any pointer data or so.

5

Source Input

Command Input

Code lines
Data &

Command
Line Validity

Reading
Source &
Command
checker

1

CFG
Generator
Controller

2

Report Command

Display Command

Analyzed
Data &

Command
Value

Source
&

 Command
Analyzer

1

Modified DFD Level 1

Modified DFD Level 2

Analyser

Source Data

Stored
code data

lines

Source Input Source
Interface

1.1

Command
Analyzer

1.4

Command Data
Command
Interface

1.2

Code lines
data

6

Source
Reading &

storing
1.3

Command
Value

Command
Line validity

Command
Value

CFG
Controller

2.1

Tick

Report Command

Display Command

Report

Display

Stored code
lines data

Command
Line Validity

Report File
Interface

2.2

Display
Interface

2.3

Code lines
data

Modified DFD Level 2 (cont.)

7

Holder

Command
Value

CFG
Generator
Controller

2.1.1

Report Command Report
Output
2.1.2

Tick

Trigger

State
Display
2.1.5

Display Command

Show
Success
2.1.6

Display Command

Show
Error
2.1.7

Display Command

Show
Help
2.1.8

Display Command

Trigger

Trigger

Trigger

Trigger

Analyzer
2.1.9

Stored
Code lines

data

Trigger

Analyzed
data

Trigger

Make
Edge
2.1.3

Report Command

Make
Block
2.1.4

Report Command

Trigger

Code lines
data

Modified DFD Level 3

8

Command
Line Validity

Check
Command validity

Stop

Check
File validity

Controller

[Command _validity_Value == True]

[Command_validity_ Value == False]
/Trigger “Show Help”

[isEndOfFile== null]
/trigger “show report file name”

[[isEndOfFile != null]
/Trigger “Analyzer”

Report Output

Tick
/Trigger “Analyzer”

 [analyzed_data != null]
/Trigger “State Display”

Tick[Holder = null]
/Trigger “Show Success”
/Trigger “Report Output”

State Display

Make Edge

Make Block

Tick [Holder == Block]
/Trigger “Make Block”

Tick [Holder == Edge]
/Trigger “Make Edge”

Tick
/Trigger “Analyzer”

[File_validity_ Value == False]
/Trigger “Show Error”

[file _validity_Value == True]

Check the end of
File

Original DFD Level 4 (FSM)

9

Check Command

Validity

Read in source

code & Store

Analyze each

code line

Show report file

name

Stop
Show success

message

Show source

code

[argc != 3]

/ trigger “Show help”

[fp == NULL]

/ trigger “Show error”

[fp != NULL]

/ trigger “Show success”

[argc == 3

&& argv[1] == “*.c”

&& argv[2] == “*.txt”]

/ trigger “Show success”

[fp != NULL]

/ trigger “Analyzer”

/ trigger “Command Analyzer”

Generate CFG with

analyzed data

Make Edge Make Block
Display

Block Info

Display

Edge Info

/ trigger “Show Block Info” / trigger “Show Edge Info”

[argc == 3

&&(argv[1])== “*.c”

&&(argv[2]) == “*.txt”]

/ trigger “Show success”

[analyzed[x] == 1

|| analyzed[x] == 2]

/ trigger “Make if”
[analyzed[x] == 5]

/ trigger “Make while”

[analyzed[x] == 4]

/ trigger “Make for”

[analyzed[x] == 3]

/ trigger “Make else”
[analyzed[x] == 7

|| analyzed[x] == 8]

/ trigger “Make case”

[analyzed[x] == 6]

/ trigger “Make do-while”

[analyzed[x] == 9]

/ trigger “Make switch”

[analyzed[x] == 10]

/ trigger “Make Block”

 trigger “Make Edge”

[line_n == x]

/ trigger “Show report

file name”

[line_n != x]

/ trigger “Make CFG”

[line_n != x]

/ trigger “Make CFG”

fp : file pointer for source code

line_n : total lines number to analyze

x : code line number of currently being

processed

/ trigger “Show code”

Modified DFD Level 4 (FSM)

10

1.1

1.2

1.3

2.1.1

2.1.2

2.1.4

2.1.5

2.1.6

2.1.7

2.1.8

2.3

2.2

Source
Input

Command
Input

Source
Data

Command
Data

Analayze
Data

Trigger

Trigger

Trigger

Trigger

Trigger

Display
Command

Display
Command

Display
Command

Display
Command

Report
Command Report

Display

1.4

Command
Value

2.1.3

Trigger

Report
Command

2.1.9

Holder

Trigger

Report
Command

Trigger

Code lines
data

Command
Line Validity

Analyzed data

Total flow Diagram

11

Main
Controller

Main

Source
Interface

Command
Interface

Report
Output

Make
Edge

Make
Block

State
Display

Show
Success

Show
Error

Show
Help Source

Reading
& storing

Command
Analyzer

Report File
Interface

Display
Interface

Source Data Command Data

 analyzed Data

 Code line
data

Trigger Trigger

Trigger

Trigger
Trigger

Trigger

 CFG Data

 Report Command
 Display
 Command

Display
Interface

 Display
 Command

Analyzer

 Command
 line validity

 CFG Data

 Display
 Command

 Display
 Command

Code
lines
data

 Code lines
data

 isEndOfFile

Original Structured Chart

12

Modified Structured Chart

Command

Analyzer

Read &

Store
Analyzer

Make

CFG

Report

Interface

Display

Interface

Make

if

Make

do-while

Make

switch

Make

basic

Make

Block

Make

Edge

Make

else

Make

while

Make

case

Make

for

Show

Block info

Show

Report file

Show

code

Show

Edge info

Show

help

Show

error

Show

success

Main

Source

Interface

Command

Interface

Trigger

Trigger

Trigger

Trigger
Trigger

Trigger

Trigger

Trigger

Trigger Trigger

Command

data
Source

data

Block data

Edge data

Report file

name

Code lines

data

*Code lines

data[] Code line

length

Code line

length

Analyzed

data[]

Code lines

data[]
*Analyzed

data[]

*Edge data[]

*Block data[]

Block data

Edge data Report file

name

13

1.1

2.1.1

2.1.8

2.1.7

2.1.6

2.1.5

2.1.4

2.1.3

2.1.2

2.4

2.3

1.2

1.3

1.4

2.1.9

2.2.1

2.2.6

2.2.5

2.2.4

2.2.3

2.2.2

2.2.11

2.2.10
2.2.9

2.2.8 2.2.7

Command

data

Source

data

Trigger

Trigger

Trigger Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Display

command

Display

command

Display

command

Display

command

Display

command

Report

command

Report

command

Trigger

Pure line data

& Analyzed data

Report file name &

Code lines data

Full DFD

14

Data name Description Type

Code[100][60] code data lines that are read as it is from .c char

Fp_c, Fp_txt(txt) File pointer that indicates source.c and report.txt FILE*

Line_n Line number of all code lines in source.c integer

Analyzed[] Has number from 1~ to 10, each indicates

1: IF 2: Else if 3: Else 4.For 5:While

6: Do-while 7:Case 8:Default 9:Switch

10: Basic block and -1 for empty or new line

integer

Pure_line[]

(pure code line)

Pointer arrays that would have dynamically allocated memories as much as each line`s length of

all code lines without all spaces in front and the end of it

Char *

Length[] The character number of each code lines

e_count, b_count e_count: counted number of all edges.

Current e_count value is given as an edge number that is newly created

B_count: counted number of all blocks.

Given as an newly created block number

integer

Edge data e_num: edge number to be newly created

Start_b: the edge`s starting block number

Dest_b: the edge`s destination block number

Block data b_num: block number to be newly created

Cont: block`s contents that were read from pure line code

edge[]

block[]

Edge pointer array that would be dynamically allocated when new edges are created.

Block pointer array that would be dynamically allocated when the new blocks need to created

E*

B*

15

Data Dictionary

16

Main function

Input Argc, argv

Output

Description

1.Reading ./CFG ex.c report.txt, it receives

source code file name and report txt file name

as input arguments from user

2.read in source code and store in code array

3. From code line, get pure code line excluding

spaces in front and end

4. Start analyzing finding out

whether each code line of statement is

If, else if, else, switch, case, default, while, for,

do while, and just basic block or \n

5. According to above data, start generating

CFG

6. Show report file name created at last

7.Free all dynamically allocated block and

edge`s space.

8. Close the file of source.c and report.txt

17

Data name Description Type

x Used in make_if/ make_switch/make while, make_for and so on for all making functions

Get x from make_CFG function as currently processed line number of code line(exactly,

pure_line[]) when it generates blocks and edges

Int*

For_flag Used in make_CFG()

if the for_flag is 1,

change it to the back edge when it meets the end of while statement

revise block contents as increment formula (ex. i++)

turn off the flag when for statement ends.

If for_flag is 0, just make basical downward edge

Integer

1 : on

0 : off

While_flag Used in make_CFG()

if the for_flag is 1,

change it to the back edge when it meets the end of while statement

turn off the flag when the while statement ends.

Integer

1 : on

0 : off

Do_while flag Used in make_CFG()

if the for_flag is 1,

change it to the back edge when it meets the end of do_while statement

turn off the flag when do_while statement ends.

Integer

1 : on

0 : off

End_of_while line number of the end of while statement, returned from make_while() Integer

End_of_do_while line number of the end of do while statement, returned from make_do_while() Integer

End_of_for line number of the end of for statement, returned from make_for() Integer

18

1.3 command_analyzer

Input Argv[1] (source.c argument)

Argv[2] (report.txt argument)

Output

Description

Reading in the command line from user,

it checks whether it finishes with

.c for C source code and

.txt for text file

19

2.1.5 show_code

Input Source data

Output Display command

Description

Print out all codes that were

read

1.4 read & store

Input Source.c , fp, code[][]

Output Code line number

Description

Reads source.c and store all lines in code array.

If the file pointer fp is valid, show success

message.

If not, show error message.

2.1.2 show_help

Input Trigger

Output Display

command

Description

Show user help message

1. when the number of

arguments are not proper

2. or the suffixes are not (.txt)

and (.c)

20

2.1.3 show_error

Input Trigger

Output

Description

Show error

in case source reading was fail.

2.1.4 show_success

Input Trigger

Output

Description

Show success if the source code and command

line were read properly.

2.1.6 show_report_file_name

Input File name

Output Display command

Description

Show report file name.

21

2.1.9 analyzer

Input Code[][], code line length,

analyzed[],pure line[],length[]

Output

Description

1.Using source code lines in code array, get pure code lines

excluding spaces in front and end

dynamically allocating each line length of memories

2. Checking pure code lines, start analyzing

whether it is

If/Else if/Else/Switch/Case/Default/

While/Do_while/For /or just Basic block

 analyzed[] contains numbers from 1~ to 10

Each number means

1: IF ,2: Else if 3: Else 4.For 5:While 6: Do-while 7:Case 8:Default

9:Switch 10: Basic block

and -1 for empty line

22

23

24

2.2.1 make_CFG

Input Analyzed[], pure lines[], block[], b_count

edge[], e_count, length[], txt

Output

Description

1.make blocks and edges according to the analyzed data, (1~10 cases)

2.Show recently created edge`s and block`s info generating CFG.

Handles if- else if cases samely and case-default too.

Make CFG through all code lines in pure_lines[].

If length[]==1, consider that code line as “ } “, not especially distinguishing „ } „

In case they are recursive statements, use flags of while, do_while, for statements

- When the flag is on and the end of recursive statement is met, revise edge`s destination

block number to the starting block of it.

 (changing normal downward edge to the upward back edge)

- After revising informations, show user recently created edge and block informations.

- Turn off the flag.

25

2.2.8 make_basic

Input Trigger, block[],edge[],

b_count, e_count, pure line[], x

Output

Description

Make one pair of block and edge for basical case.

In case analyzed[x] value is 10

26

Basic Block

2.2.2 make_if (applied to else if case,too)

Input Trigger,

Edge[],block[],e_count,b_count,pure_li

ne[],x,length[],txt

Output

Description

1.Make head block

2.Make left edge and left case block (true)

3.Make right edge (false edge)

27

2.2.3 make_else

Input Trigger,

Edge[],block[],e_count,b_count,pure_li

ne[],x, length[],txt

Output

Description

When only else comes out after if or else if,

make right case block (false block)

Comparison

Block

True Block

Comparison

Block

True Block

+

if

Else if

+ Else

for
Initialization

Block

Comparison

Block

2.2.4 make_for

Input Trigger,

Edge[],block[],e_count,b_count,pure_line[],x,len

gth[],txt,char incre[],txt

Output

Description

1. Separate each initialization, comparison,

 increment or decrement part from for(~;~;~) code line

2.Make block for initializing part

 Ex. [i=0]

3.Make edge

4.Make block for comparison part

 Ex. [i<10]

5.Make edge

28

2.2.5 make_while

Input Trigger,

Edge[],block[],e_count,b_count,pur

e_line[],x,length[],txt

Output End line number of while

Description

1.Make block for while`s (condition) part

2.Make edge

3. Calculate end line number of while

statement and return the number

2.2.6 make_do_while

Input Trigger,

Edge[],block[],e_count,b_count,pure

_line[],x,length[],txt

Output End line number of do_while

Description

1.Make a block with do`s next statement

2. Make edge

3. Calculate end line number of do_while

statement and return the number

Condition

comparison

Block

while

Basic Block

29

2.2.8 make_switch

Input Trigger,

Edge[],block[],e_count,b_count,pure

_line[],x,length[],txt

Output

Description

1.Make block for variable that is in the switch

parenthesis

2.2.7 make_case (applied to default case too)

Input Trigger,

Edge[],block[],e_count,b_count,pur

e_line[],x,length[],txt

Output

Description

1. Make edge

2. Revise edge`s start block number to the

stored head block number of switch

2. Make block

Basic Block

switch

+

30

2.2.10 make_block

Input Trigger, block[], b_count, pure_line[]

Output

Description

1. Dynamically allocate new block space

2. give newly incremented block number

3. Give block contents from pure line array

2.2.11 make_edge

Input Trigger, edge[],e_count,b_count

Output Block number

Description

1. Dynamically allocate new edge space

2. Give newly created edge number

3. Give new edge starting block number

4. Give new edge destination block number

31

2.1.8 show_edge_info

Input Trigger, Edge[], e_count, txt

Output Display command,

Report command

Description

1.Show user edge`s all information

2.Write the edge information to text report file

using file output

2.1.7 show_block_info

Input Trigger,Block[],b_count, txt

Output Display command,

Report command

Description

1.Show user block`s all information

2.write block information to the text report file using

file output

32

33

